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1 Competition diffusion systems with Lotka-Volterra interactions

With symmetric interspecific competition rates βi,j = βj,i large:

−∆ui = fi(ui)− ui
h∑
j=1
j 6=i

βi,juj in Ω,





2 Energy minimizing configurations of Bose–Einstein condensates in multiple
spin–states with repulsive interaction potentials

E(ψ1, · · · , ψh) =
∫ ∑h

i
1
2|∇ψi|

2 + Fi(|ψi|2) +
∑h

j 6=i βi,j|ψi|2|ψj|2 in Ω,

∫
|ψi|2 = mi , i = 1, . . . , h

Defocusing: S.M. Chang, C.S. Lin, T.C. Lin, and W.W. Lin, Phys. D 196, 341–361 (2004)

Focusing: Conti M., Terracini S., Verzini G., J. Functional Analysis, 198 (2003) 160-196



3 Optimal partition problems for Dirichlet eigenvalues

min

{
h∑
i=1

λp1(ωi) : (ω1, · · · , ωk) ∈ Bh(Ω))

}

where
Bh = {(ω1, . . . , ωh) : ωi open, |ωi ∩ ωj| = 0 for i 6= j and ∪i ωi ⊆ Ω} .

B. Bourdin, D. Bucur, and . Oudet, Optimal Partitions for Eigenvalues, SIAM J. Sci. Comput.
31, 2009/10 pp. 4100-4114



With more and more nodal components:

With higher eigenvalues:



4 Uniform bounds in Hölder spaces

Consider strongly competing systems with either of the Lotka-Volterra or gradient type interactions

−∆ui(x) = f (ui)− βui(x)
∑
j 6=i

u2
j(x)

Theorem 1 (Conti-T-Verzini ’06, Noris-Tavares-T-Verzini ’10) Let Uβ be a family of
H1–bounded solutions. There exists Lα > 0 such that

sup
x,y∈Ω

ui,β(x)− ui,β(y)

|x− y|α
< Lα

for all i = 1, . . . , h and for all β > 0. Moreover, the limiting profiles are Lipschitz continuous.

Ingredients of the proof. Assuming the contrary, after scaling and performing the blow–up analysis,
after a lot of work we would arrive to the existence of an entire solution of

−∆ui(x) = −ui(x)
∑
j 6=i

u2
j(x)

satisfying a global bound in Hölder norm, in contradiction with suitable perturbed monitonicity
formulæ underlying the rules of the minimal spacial growth for competition systems.



5 A Liouville type theorem

The proof of Theorem 1 rests upon a blow–up argument and the following non existence theorem:

Theorem 2 (Conti-T-Verzini ’06, Noris-Tavares-T-Verzini ’10) Let k ≥ 2, aij > 0,
and let U = (u1, . . . , uk) be a solution of

 −∆ui(x) = −ui(x)
∑
j 6=i

aiju
2
j(x) x ∈ RN

ui(x) ≥ 0 x ∈ RN

for every i. Assume that, for some α ∈ (0, 1), there holds

max
i=1,...,k

sup
x∈RN

|ui(x)|
1 + |x|α

<∞.

Then all components (but possibly one) vanish.



6 Classification of entire solutions

We understand that a key step of the theory is the classification of the solutions of the system, with
respect to their spatial growth. To this aim, we have at our disposal two major tools

The perturbed Alt-Caffarelli-Friedman monotonicity formula (for Lotka-Volterra and all other
types of interaction): let

Φ(r) :=
∏
i

1

rα(k)−ε

∫
Br(0)

K(x)

|∇ui|2 +
∑
j 6=i

aiju
2
iu

2
j

 ,

where K(x) = |x|2−N for |x| ≥ 1. The exponent α(k) ≥ 2 depends on a spectral optimal
partition problem on the sphere. Then Φ is increasing.

The Almgren monotonicity formula (only for gradient systems): let

N(r) :=
r
∫
Br(0)

∑
i |∇ui|2 +

∑
j 6=i u

2
iu

2
j∫

∂Br(0)

∑
i u

2
i

Then N is increasing. Moreover,

lim
r→+∞

N(r) ≥ 1



7 Two components in one space dimension

In order to understand the interplay of two neighboring components, we have to deal with the
solutions to the system


∆u = uv2

∆v = vu2 ,

u, v > 0 in RN

Of course, there are one variable solutions (depending on the energy h > 0):


u′′ = uv2

v′′ = vu2 ,

|u′|2 + |v′|2 − u2v2 = h

u(x) = v(−x) , u, v > 0 in R.

All these solution have the lowest possible growth

lim
r→+∞

N(r) = 1



8 Uniqueness of entire solutions in one space dimension

Theorem 3 (Berestycki-Lin-Wei-Zhao ’09, Berestycki-T-Wang-Wei ’12)) Up to trans-
lations and reflections, there is only one one-parameter family of solutions to

u
′′

= uv2,

v
′′

= vu2,

u, v > 0 in R

For this family we have v(t∗ − t) = u(t∗ + t). In addition they are all stable.

Proof

Normalize the energy to one;

observe that u and v are positive convex functions;

assume, for instance, that u is increasing and v is decreasing. Moreover u decays superexponen-
tially at −∞, v at +∞
as x→ +∞, |u′(x)− 1| decays exponentially. This implies the existence of a positive constant
A such that

|u(x)− x+| + |v(x)− x−| ≤ A.



9 The sliding method

In addition, the limits

lim
x→+∞

(u(x)− x+), lim
x→−∞

(v(x)− x−)

exist. So there are asymptotes at infinity
for both u and v

Now assume (u1, v1) and (u2, v2) are two entire solutions of the problem with the same unitary
energy. For t > 0, denote

u1,t(x) := u1(x + t), v1,t(x) := v1(x + t).

Step 1. Thanks of the decay estimates, there exists t such that for all t ≥ t,

u1,t(x) ≥ u2(x), v1,t(x) ≤ v2(x) in R. (Sl)



Step 2. Decrease the t to an optimal value when (Sl) holds

t0 = inf{t′| such that (Sl) holds for all t ≥ t
′}.

Note that there holds {
−(u1,t0 − u2)

′′
+ v2

1,t0
(u1,t0 − u2) ≥ 0

−(v2 − v1,t0)
′′

+ u2
1,t0

(v2 − v1,t0) ≤ 0

Hence, by the strong maximum principle,

either u1,t0(x) ≡ u2(x), v1,t0(x) ≡ v2(x) in R
or u1,t0(x) > u2(x), v1,t0(x) < v2(x) in R

Step 3. We show, using again some form of the maximum principle, that the second case can
not occur. This is done in two steps:

if the asymptotes do not coincide, then we work essentially on a bounded domain and we can
use the usual continuation argument to obtain a contradiction;

if some of the asymptotes coincides, the extremality of t0 implies that, for t0 − ε there is a
negative part of either u1,t0−ε − u2 or −v1,t0−ε + v2. This part must be placed close to infinity.
Using as a weight function g(x) = log(x2 + 1/2) we reach again a contradiction.



10 De Giorgi type conjecture. partial results in two dimensions

Theorem 4 (Berestycki-Lin-Wei-Zhao ’09(+BTWW’12)) Let (u, v) a solution to

∆u = uv2 , ∆v = vu2 , u, v > 0 in R2

such that

u(x) + v(x) ≤ C(1 + |x|).

and which is monotone in one direction. Then (u, v) is one dimensional , (i.e., there exists
a ∈ R2, |a| = 1, b ∈ R such that (u, v) = (u0(a · x − b), v0(a · x − b)) where (u0, v0) is the
one-dimensional solution).

A quite standard argument shows that monotone =⇒ stable. Recall that a stable solution (u, v)
is such that the linearization is weakly positive definite. That is, it satisfies

∫
Rn

[∇ϕ|2 + |∇ψ|2 + v2ϕ2 + u2ψ2 + 4uvϕψ] ≥ 0, ∀ϕ, ψ ∈ C∞0 (Rn).



11 Planar stable solutions and a theorem by Kelei Wang

Theorem 5 (Berestycki-T-Wang-Wei ’12) Let (u, v) be a stable solution to the system in
R2 of

∆u = uv2 , ∆v = vu2 , u, v > 0 in R2

such that

u(x) + v(x) ≤ C(1 + |x|).

Then (u, v) is one-dimensional, (i.e., there exists a ∈ R2, |a| = 1, b ∈ R such that (u, v) =
(u0(a · x− b), v0(a · x− b)) where (u0, v0) is the one-dimensional solution)

Theorem 6 (Kelei Wang, preprint 2012) In any space dimensions, let (u, v) a solution
having at most linear growth and which is minimal (in the sense of Morse): the energy is
minimized with respect to compact support variations. Then (u, v) is one dimensional .



12 Solutions with polynomial growth

A natural question is whether or not all solutions to the system should satisfy the linear growth.
For every integer d, there are solutions to the system with polynomial growth |x|d. To describe the
behavior at infinity, let us consider the harmonic polynomial Φ of degree d as

Φ := Re(zd).

Note that Φ has some dihedral symmetry; indeed, let us take its d nodal lines L1, · · · , Ld and
denote the corresponding reflection with respect to these lines as T1, · · · , Td: then there holds
Φ(Tiz) = −Φ(z).

Theorem 7 (B-T-W-W’12) For each positive integer d ≥ 1, there exists a solution (u, v)
to the system, satisfying

(1) u− v > 0 in {Φ > 0} and u− v < 0 in {Φ < 0};
(2) u ≥ Φ+ and v ≥ Φ−;

(3) ∀i = 1, · · · , d, u(Tiz) = v(z);

(4) ∀r > 0, the Almgren frequency function satisfies

N(r) :=
r
∫
Br(0) |∇u|

2 + |∇v|2 + u2v2∫
∂Br(0) u

2 + v2
≤ d = lim

r→+∞
N(r);



13 Asymptotics at infinity

We consider the blow-down sequence

(uR(x), vR(x)) := (
1

L(R)
u(Rx)

1

L(R)
v(Rx)),

where u(0) = v(0) and L(R) is chosen so that∫
∂B1(0)

u2
R + v2

R = 1.

We have the following

Theorem 8 Let (u, v) be a solution of the system such that d := lim
r→+∞

N(r) < +∞. As

R→∞, (uR, vR) defined above (up to a subsequence) converges to (Ψ+,Ψ−) uniformly on any
compact set of RN . Here Ψ is a homogeneous harmonic polynomial of degree d. If d = 1 then
(u, v) is asymptotically linear at infinity.

In particular this applies to the solutions found by Theorem 6 to give

Corollary 1 Let (u, v) be a solution of the system given by Theorem 6: then

(uR(x), vR(x)) := (
1

Rd
u(Rx)

1

Rd
v(Rx))

converges uniformly on compact subsets of R2 to a multiple of (Φ+,Φ−), where Φ := Re(zd).



14 Systems with many components

Theorem 9 (Berestycki-T-Wang-Wei ’12) There exists a positive solution to the system

∆ui = ui

k∑
j 6=i,j=1

u2
j , in C, i = 1, . . . , k

having the following symmetries (here z is the complex conjugate of z)

ui(z) = ui(G
hz), on C , i = 1, . . . , k

ui(z) = ui+1(Gz), on C , i = 1, . . . , k

uk+1(z) = u1(z), on C
uk+2−i(z) = ui(z), on C , i = 1, . . . , k

such that

lim
r→∞

1

r1+2d

∫
∂Br(0)

k∑
1

u2
i = b ∈ (0,+∞) ;

and

lim
r→∞

r
∫
Br(0)

∑k
1 |∇ui|2 +

∑
i<j u

2
iu

2
j∫

∂Br(0)

∑k
1 u

2
i

= d .



15 Limiting profiles

As the interspecific competition rate β = minij βij tends to infinity we find a vectorU = (u1, · · · , uh)
of functions

having mutually disjoint supports: ui · uj ≡ 0 in Ω for i 6= j,

satisfying

−∆ui = fi(x, ui) whenever ui 6= 0 , i = 1, . . . , h,

Questions:

Uniqueness vs multiplicity

Extremality conditions at the interface of the nodal components

Regularity

of the minimizers
of the interfaces



16 Segregated critical configuration

Let Ω be an open bounded subset of RN , with N ≥ 2. Let U = (u1, . . . , uh) ∈ (H1(Ω))h be a
vector of (real, complex, vector-valued)

nontrivial Lipschitz functions in Ω,

having mutually disjoint supports: ui · uj ≡ 0 in Ω for i 6= j,

satisfying

−∆ui = fi(x, ui) whenever ui 6= 0 , i = 1, . . . , h,

where fi : Ω × R+ → R are C1 functions such that fi(x, s) = O(s) when s → 0, uniformly in
x.

Our main interest is the study of the regularity of the nodal set of the segregated configurations
U = (u1, . . . , uh):

ΓU = {x ∈ Ω : U(x) = 0}

Obviously, without other conditions, there is no reason at all why the nodal set should be regular.
We must add some information on the interaction between the components at the interface of their
supports.



17 A weak reflection law

Theorem 10 (Tavares-T, 2010) Let us define, for every x0 ∈ Ω and r ∈ (0, dist(x0, ∂Ω))
the energy

Ẽ(r) = Ẽ(x0, U, r) =
1

rN−2

∫
Br(x0)

|∇U |2 ,

then, Ẽ(x0, U, ·) is an absolutely continuous function of r, and we assume that it satisfies the
following differential equation

d

dr
Ẽ(x0, U, r) =

2

rN−2

∫
∂Br(x0)

(∂νU)2 dσ+
2

rN−1

∫
Br(x0)

∑
i

fi(x, ui)〈∇ui, x−x0〉.

Then, there exists a set ΣU ⊆ ΓU the regular part, relatively open in ΓU , such that

Hdim(ΓU \ ΣU) ≤ N − 2, and if N = 2 then actually ΓU \ ΣU is a locally finite set;

ΣU is a collection of hyper-surfaces of class C1,α (for every 0 < α < 1). Furthermore for
every x0 ∈ ΣU

lim
x→x+

0

|∇U(x)| = lim
x→x−0

|∇U(x)| 6= 0,

where the limits as x → x±0 are taken from the opposite sides of the hyper-surface. Further-
more, if N = 2 then ΣU consists in a locally finite collection of curves meeting with equal
angles at singular points.



18 Some remarks

d

dr

1

rN−2

∫
Br(x0)

|∇U |2 =
2

rN−2

∫
∂Br(x0)

(∂νU)2 dσ+
2

rN−1

∫
Br(x0)

∑
i

fi(x, ui)〈∇ui, x−x0〉. (WRL)

It is easy to check that equation (WRL) always holds for balls lying entirely inside one of the
component supports, as a consequence of the elliptic equation. Hence, for our class systems,
it represents the only interaction between the different components ui through the common
boundary of their supports;

(WRL) is satisfied by the nodal components of solutions to a single semilinear elliptic equation
of the form −∆u = f (u).

equation (WRL) can be seen as a weak form of a reflection property through the interfaces.
Consider the following example: take two linear functions on complementary half-spaces:

u1(x) = a1x
+
1 u2(x) = a2x

−
1 .

Then

(WRL) ⇐⇒ |a1| = |a2| .



More in general, when we have two components with a smooth interface between the supports,
then

(WRL) ⇐⇒ lim
x→x+

0

|∇U(x)| = lim
x→x−0

|∇U(x)| .

(WRL) as an extremality condition

Although this hypothesis may look weird and may seem hard to check in applications, it occurs
naturally in many situations where the vector U appears as a limit configuration in problems of
spatial segregation.

It has to be noted indeed that a form of (WRL) always holds for solutions of systems of interacting
semilinear equations and that it persists under strong H1 limits.

In addition, (WRL) holds for vector functions U minimizing Lagrangian functional associated
with the system.

It is fullfilled also for strong limits to competition–diffusion systems, both those possessing a
variational structure and those with Lotka-Volterra type interaction.

Our theorem extends also to sign changing, complex and vector valued functions ui. Lipschitz
continuity can be weakened into Hölder continuity for every α ∈ (0, 1)].



19 More remarks

This was brought to my attention by Kelei Wang. Assume U minimizes a Lagrangian energy with
a pointwise constraint of the type U(x) ∈ Σ, for almost every x ∈ Ω. Let Y ∈ C∞0 (Ω;RN). Then,
differentiation of the energy with respect to ε with U(x) 7→ Uε(x) = U(x + εY (x)) yields the well
known identity

∫
Ω

{
dY (x)∇U(x) · ∇U(x)− divY (x)

[
1

2
|∇U(x)|2 − F (U(x))

]}
dx = 0 ,∀Y ∈ C∞0 (Ω;RN) .

By localizing to a regular ω ⊂ Ω this implies∫
ω

{
dY (x)∇U(x) · ∇U(x)− divY (x)

[
1

2
|∇U(x)|2 − F (U(x))

]}
dx

=

∫
∂ω

{
Y (x) · ∇U(x)ν(x) · ∇U(x)− ν(x) · Y (x)

[
1

2
|∇U(x)|2 − F (U(x))

]}
dσ ,

∀ smooth ω and ∀Y ∈ C∞0 (Ω;RN) . (*)

Next

(∗) +

(
Y (x) = x− x0

ω = Br(x0)

)
=⇒ (WRL)
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22 Asymptotic limits of a system of Gross-Pitaevskii equations

Consider the following system of nonlinear Schrödinger equations

{
−∆ui + λiui = ωiu

3
i − βui

∑
j 6=i βiju

2
j

ui ∈ H1
0(Ω), ui > 0 in Ω.

i = 1, . . . , h,

in a smooth bounded domain Ω ⊂ RN , N = 2, 3. Such type of systems arises in the theory of
Bose-Einstein condensation in multiple spin states. Here we consider βij = βji 6= 0 (which gives a
variational structure to the problem) and take λi, ωi ∈ R and β ∈ (0,+∞) large. The existence of
solutions for β large is still an open problem for some choices of λi, ωi.

One of the many interesting questions about these systems is the asymptotic study of its solutions
as β → +∞ (which represents an increasing of the interspecies scattering length) and study of the
regularity of the limiting profiles. From the uniform Hölder bounds theorem we know that:

C0,α– bounds (for all 0 < α < 1) for any given L∞–bounded family of solutions Uβ =
(u1,β, . . . , uh,β) of the system;

the possible limit configurations U = limβ→+∞Uβ are Lipschitz continuous.

As a byproduct, we have

Theorem 11 Let U be a limit as β → +∞ of a family {Uβ} of L∞–bounded solutions of the
system. Then the conclusion of Theorem 7 holds.



All the required assumptions are satisfied for such limiting profiles, with fi(x, s) = fi(s) =
ωis

3 − λis, except for the weak reflection law. The procedure to verify it is the following: defining
an approximated energy associated with system - which has a variational structure-,

Eβ(r) =
1

rN−2

∫
Br(x0)

(
|∇Uβ|2 − 〈F (Uβ), Uβ〉

)
+

∫
Br(x0)

2β
∑
i<j

u2
i,βu

2
j,β

by a direct calculation it holds

E ′β(r) =
2

rN−2

∫
∂Br(x0)

(∂νUβ)2 dσ +
2

rN−1

∫
Br(x0)

∑
i

fi(ui,β)〈∇ui,β, x− x0〉+

+
1

rN−1

∫
Br(x0)

(N − 2)〈F (Uβ), Uβ〉 −
1

rN−2

∫
∂Br(x0)

〈F (Uβ), Uβ〉 dσ+

+
4−N
rN−1

∫
Br(x0)

β
∑
i<j

u2
i,βu

2
j,β +

∫
∂Br(x0)

β
∑
i<j

u2
i,βu

2
j,β dσ.

We know the following facts:

there holds strong convergence Uβ → U in H1 ∩ C0,α(Ω) for every 0 < α < 1,

and
∫

Ω β
∑

i<j u
2
i,βu

2
j,β → 0.

Hence, as β → +∞, we prove that U satisfies the weak reflection law.



23 Lotka-Volterra competitive interactions with symmetric competition rates

Consider the following Lotka-Volterra model for the competition between h different species.

{
−∆ui = fi(ui)− βui

∑
j 6=i ai,juj in Ω,

ui ≥ 0 in Ω, ui = ϕi on ∂Ω.

with Ω ⊂ RN a smooth bounded domain and ϕi positive W 1,∞(∂Ω)–functions with disjoint
supports. We focus on the asymptotic study of solutions as β → +∞. It is not difficult to show
that all the possible H1–limits U of a given sequence of solutions {Uβ}β>0 (as β → +∞) belong to
the class

S(Ω) =
{

(u1, . . . , uh) ∈
(
H1(Ω)

)h
: ui ≥ 0 in Ω, ui · uj = 0 if i 6= j and −∆ui ≤ fi(ui),

−∆(ui −
∑
j 6=i

aij
aji
uj) ≥ fi(x, ui(x))−

∑
j 6=i

aij
aji
fj(x, uj)

 .

Theorem 12 Let U ∈ S, then if aij = aji, ∀i, j the conclusion of Theorem 7 holds.



24 Regularity of interfaces in optimal partition problems related to the first
eigenvalue

Next we consider some optimal partition problems involving eigenvalues. For any integer h ≥ 0, we
define the set of h–partitions of Ω as

Bh = {(ω1, . . . , ωh) : ωi measurable , |ωi ∩ ωj| = 0 for i 6= j and ∪i ωi ⊆ Ω} .
Consider the following optimization problems: for any positive real number p ≥ 1,

Lh,p := inf
Bh

(
1

h

h∑
i=1

(λ1(ωi))
p

)1/p

,

and, for p = +∞ we find the limiting problem

Lh := inf
Bh

max
i=1,...,h

(λ1(ωi)),

where λ1(ω) denotes the first eigenvalue of −∆ in H1
0(ω) in a generalized sense. We refer to the

papers Conti, Verzini, T. and Helffer, Hoffmann-Ostenhof, T., for a more detailed description of
these problems.



Our theorem applies to suitable multiples of the eigenfunctions associated with the optimal par-
tition. More precisely, we proved that

let p ∈ [1,+∞) and let (ω1, . . . , ωh) ∈ Bh be any minimal partition associated with Lh,p and
let (φi)i be any set of positive eigenfunctions normalized in L2 corresponding to (λ1(ωi))i. Then
there exist ai > 0 such that the functions ui = aiφi verify in Ω, for every i = 1, . . . , h, the
differential inequalities (in the distributional sense):

−∆ui ≤ λ1(ωi)ui and −∆(ui−
∑

j 6=i uj) ≥ λ1(ωi)ui−
∑

j 6=i λ1(ωi)uj;

and:

let (ω̃1, . . . , ω̃h) ∈ Bh be any minimal partition associated with Lh and let (φ̃i)i be any set of
positive eigenfunctions normalized in L2 corresponding to (λ1(ω̃i))i. Then there exist ai ≥ 0,
not all vanishing, such that the functions ũi = aiφ̃i verify in Ω, for every i = 1, . . . , h, the
differential inequalities (in the distributional sense):

−∆ũi ≤ Lhũi and −∆(ũi−
∑

j 6=i ũj) ≥ Lh(ũi−
∑

j 6=i ũj).

In particular the functions Ũ = (ũ1, . . . , ũh) and U = (u1, . . . , uh) belong to S(Ω). As conse-
quence, we have the following result:

Theorem 13 Let (ω1, . . . , ωh) ∈ Bh be any minimal partition and let Γ be the union of the
interfaces; then the conclusion of Theorem 7 holds.



25 Extremality conditions for partitions involving higher eigenvalues

We would like to attack the optimal partition problem for higher eigenvalues (k ≥ 2):

L = min
1

h

(
h∑
i=1

λk(ωi)

)
.

What are the extremality conditions? Hadamard domain variation requires simple eigenvalues.
Introduce the penalized functional:

Eβ(u1, · · · , uh) =

∫
Ω

∑
i

|∇ui|2 + β
∑
i 6=j

|ui|2|uj|2

with constraints

∫
Ω

|ui|2 = 1 ∀ i = 1, · · · , h .

As β +∞, critical points of Eβ converge to pairs of segregated eigenfunctions.

Problem: How to define an appropriate critical level for the penalized functional?

Existence of the minimal partition has been proved by Bucur–Buttazzo.



26 Spectral partitions

Consider an eigenfunction, and the associated nodal partition. how can we detect whether it
possesses any minimization property?

We easily understand tha the most appropriate function of the eigenvalue to be considered is:

Lh := inf
Bh

max
i=1,...,h

(λ1(ωi)),

A straightforward consequence of the Fisher–Courant theorem is that

λk ≤ Lk .

For one dimensional problems we always have equality (Sturm oscillation principle) for every k.
On the other hand, in more space dimensions, the k-th eigenfunction may possess less than k nodal
domains.

Given k, we denote by Lk the smallest eigenvalue (if any) whose eigenspace contains an eigen-
function with k nodal domains (Lk = +∞ if no such an eigenfunction exists).

In general, an easy consequence of the Courant nodal theorem for connected domains is that

λk ≤ Lk .



So we have the inequalities

λk ≤ Lk ≤ Lk , ∀k.

Can we characterize the equality cases?

Theorem 14 (Helffer, Hoffman-Ostenhof, T, 2009–2010) Suppose Ω ⊂ RN regular. If
either λk = Lk or Lk = Lk then

λk = Lk = Lk .

In addition, one can find in the eigenspace associated to λk an eigenfunction uk having
extactly k nodal domains.

The k–th eigenfunction has k nodal domains (i.e. is sharp with respect to the Courant nodal
Theorem) if and only if the associated nodal k–partition is optimal.

As a consequence, every time we know (for instance for the symmetries of the problem) that the
second eigenvalue is degenerate, then the minimal spectral 3-partition has necessarily a nontrivial
clustering point.



27 The case of the sphere

We consider the Laplace-Beltrami operator on the two-sphere.

Conjecture 1 (Bishop 1992) The minimal 3-partition for 1
3(
∑3

i=1 λ1(Di)) corresponds to
the Y-partition, whose boundary is given by the intersection of S2 with the three half-planes
defined respectively by φ = 0, 2π

3 ,
−2π

3

The conjecture can be restated as

L3,1(S2) =
15

4

and also

L3,p(S2) = L3(S2) =
15

4
,∀p

Bishop’s Conjecture was motivated by the analysis of the properties of harmonic functions in
conic sets. A reference paper in this context is that by Friedland-Hayman. It is proved there that
the optimal two-partition is achieved by the two half spheres.



28 Uniqueness for L3 in two dimensions

Theorem 15 (Helffer, Hoffman-Ostenhof, T) Any minimal spectral 3-partition of S2 is
(up to a rotation) obtained by the Y-partition. Hence

L3(S2) =
15

4
.

Consider a homogeneous function in R3 of the form

u(x) = rαg(θ, φ)

which is harmonic outside its nodal set: −∆u = 0 , u > 0 and such that the nodal set divides
the sphere in three parts, then

α(α + 1) ≥ L3(S2) .

Hence our theorem implies that α ≥ 3/2.



29 Ideas of the proof:

first, minimal partitions on S2 in three parts exist and share the same properties as for planar
domains: regularity and equal angle meeting property. Hence the nodal set is a finite union of
arcs.

because the second eigenvalue of the Laplace-Beltrami operator is singular (has nontrivial mul-
tiplicity), then the minimal 3-partition cannot be a nodal partition.

use Euler’s formula and deduce that the nodal line s of a minimal 3-partitions consists exactly
two points x1 and x2 and three arcs joining these two points.

use Borsuk (or Ljusternik-Schnirelman) theorem to prove that the nodal set contains a pair of
antipodal points.

the next point is that any minimal 3-partition which contains two antipodal points in its bound-
ary can be lifted to a symmetric 6-partition on the double covering S2

C.

finally, the last point is to show that on the double covering a minimal symmetric 6-partition is
necessarily the lifting on the double covering of the Y-partition.

– use the knowledge of the spectrum of the Laplace-Beltrami on the double covering and classify
all odd and even spectrum.

– use again the characterization of the eigenvalues whose nodal partition is minimal: this holds
if and only the minimal eigenvalue whose nodal partition has k nodal domain is the minimal
one,
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