
Γ-convergence of gradient flows and applications

Sylvia Serfaty
Université P. et M. Curie Paris 6, Laboratoire Jacques-Louis Lions

& Courant Institute, NYU
http://www.ann.jussieu.fr/∼serfaty

Bruxelles, October 26, 2012



Outline

The abstract method in the Hilbert space setting

Extension of the scheme to the metric space setting

Illustrations
Ginzburg-Landau vortices
Allen-Cahn equation
Cahn-Hilliard equation



The question

Given a family of energy functionals (Eε)ε>0 which Γ-converges to a
functional F , when can we say that the solutions to the gradient flows{

∂tuε = −∇Eε(uε)
uε(0) = u0

ε

converge as ε→ 0 to a solution to the limiting gradient flow{
∂tu = −∇F (u)
u(0) = u0 ??

(Question raised by De Giorgi).

I it’s not true in general, so additional conditions are needed
I in infinite dimensions it requires to specify in what sense the

gradient is taken
I for an example where it is true think of Allen-Cahn equation

(gradient flow of Modica-Mortola energy) converging to mean
curvature flow (gradient flow of the perimeter functional).
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Abstract scheme in the Hilbert space setting (Sandier-S)

I Assume Eε ∈ C 1 and ∇XεEε denotes the gradient of Eε with respect
to a Hilbert space structure Xε, defined by

dEε(u) · φ = 〈∇Xε
Eε(u), φ〉Xε

.

I Assume F ∈ C 1 is defined over a (finite-dimensional for simplicity)
Hilbert space Y .

I Assume Eε Γ-converges to F in the sense that if uε
S
⇀ u then

lim inf
ε→0

Eε(uε) ≥ F (u).

We need two extra conditions:
(C1) (Lower bound on the velocity) If ∀t ∈ (0,T ), uε(t)

S
⇀ u(t) then for

every s ∈ (0,T )

lim inf
ε→0

∫ s

0
‖∂tuε(t)‖2Xε

dt ≥
∫ s

0
‖∂tu(t)‖2Y dt.

(C2) (Lower bound for the slopes) If uε
S
⇀ u then

lim inf
ε→0

‖∇Xε
Eε(uε)‖2Xε

≥ ‖∇Y F (u)‖2Y .



Theorem (Sandier-S)

Let Eε and F be as above with (C1) and (C2) holding. Let then uε(t) be
a family of solutions to

∂tuε = −∇XεEε(uε) on [0,T )

with uε(t)
S
⇀ u(t) for all t ∈ [0,T ), such that

∀t ∈ [0,T ) Eε(uε(0))− Eε(uε(t)) =
∫ t
0 ‖∂tuε(s)‖2Xε

ds. Assume also
that

lim
ε→0

Eε(uε(0)) = F (u(0)),

then u is in H1((0,T ),Y ) (in particular continuous in time) and is a
solution to

∂tu = −∇Y F (u) on (0,T ). (1)

Moreover

∀t ∈ (0,T ) Eε(uε(t)) = F (u(t)) + o(1)

‖∂tuε‖Xε → ‖∂tu‖Y in L2(0,T )

‖∇XεEε(uε)‖Xε → ‖∇Y F‖Y in L2(0,T ).



The proof

Eε(uε(0))− Eε(uε(t)) =

∫ t

0
‖∂tuε(s)‖2Xε

ds

=
1
2

∫ t

0
‖∂tuε(s)‖2Xε

+ ‖∇XεEε(uε(s))‖2Xε
ds

≥ 1
2

∫ t

0
‖∂tu(s)‖2Y + ‖∇Y F (u(s))‖2Y + o(1)

≥ −
∫ t

0
〈∂tu,∇Y F (u)〉Y ds + o(1) (2)

= F (u(0))− F (u(t)) + o(1).

But since uε(t) is a well-prepared solution, we have
limε→0 Eε(uε(0)) = F (u(0)). Combining the above relations, we deduce

lim inf
ε→0

(−Eε(uε(t))) ≥ −F (u(t))

But by Γ-convergence of Eε to F the converse holds, so we must have
equality everywhere, hence in (2) and for a.e. t

∂tu = −∇Y F (u)
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Comments

I The conditions (C1) and (C2) provide sufficient extra conditions for
Γ-convergence of gradient flows. They correspond to a kind of C 1

notion of Γ-convergence: they allow to compare the C 1 structures of
the energy landscapes of Eε and F . Of course the spaces where these
flows live being different, they cannot be compared, however the
sizes of the slopes or derivatives can be compared, and this suffices.

I One does not really need to prove (C1)-(C2) for all uε but only for
families of solutions to the gradient flow.

I The condition (C2) immediately implies that critical points of Eε
converge to critical points of F .

I A similar C 2 notion of Γ-convergence was introduced (S), providing
sufficient conditions (based on the C 2 structure of the energy
landscape) to ensure that stable critical points of Eε converge to
stable critical points of F

I The two conditions allow at the same time to “guess" for which
structure Y the limiting equation is the gradient flow of F .



Extension of the scheme to the metric space setting

Notion of gradient flow on metric spaces (= curves of minimal slope, or
minimizing movements of De Giorgi) is more general and can be better
suited for applications. Framework by Ambrosio-Gigli-Savaré.
This definition of gradient flows is based on the remark that if u is a
solution of the gradient flow

∂tu = −∇φ(u)

u is characterized by the relation

∂t(φ(u)) ≤ −1
2
(
|∂tu|2 + |∇φ|2

)
(3)

Indeed the relation 1
2

(
|∂tu|2 + |∇φ|2

)
≥ −〈∂tu,∇φ〉 holds in all cases,

and there is equality if and only if ∂tu = −∇φ(u). Moreover (3) has a
meaning even on metric spaces provided one gives a definition for |∂tu|
and for |∇φ|.



Definition (Metric derivative)

Let v be an absolutely continuous curve on (a, b). Then the limit

|v ′|(t) := lim
s→t

d(v(s), v(t))

|s − t|

exists for a.e. t ∈ (a, b) and is called the metric derivative of v .

Definition (Strong upper gradient)

A function g : S → [0,+∞] is a strong upper gradient for φ if for every
absolutely continuous curve v on (a, b)

|φ(v(t))− φ(v(s))| ≤
∫ t

s
g(v(r))|v ′|(r) dr a < s ≤ t < b.

Definition (Curve of maximal slope)

v absolutely continuous is a curve of maximal slope for the functional φ
with respect to its strong upper gradient g if

(φ ◦ u)′(t) ≤ −1
2
(
|u′|2(t) + g2(u(t))

)
a.e. t.



Theorem
Let Φε and Φ be functionals defined on metric spaces (Sε, dε) and (S, d)
respectively, and such that Γ− lim inf Φε ≥ Φ. Let gε and g be strong
upper gradients of Φε and Φ respectively. Assume in addition the
relations
1. (Lower bound on the metric derivatives) If uε(t)

S
⇀ u(t) for s ∈ (0,T )

then
∀s ∈ [0,T ) lim inf

ε→0

∫ s

0
|u′ε|2dε

(t) dt ≥
∫ s

0
|u′|d(t) dt. (4)

2. (Lower bound on the upper gradients) If uε
S
⇀ u then

lim inf
ε→0

gε(uε) ≥ g(u). (5)

Let then uε(t) be a curve of maximal slope on (0,T ) for Φε with respect
to gε, such that uε(t)

S
⇀ u(t), which is well-prepared in the sense that

lim
ε→0

Φε(uε(0)) = Φ(u(0)).

Then u is a curve of maximal slope with respect to g.



The dynamics of Ginzburg-Landau vortices

Ginzburg-Landau energy functional without magnetic field

Fε(u) =
1
2

∫
Ω

|∇u|2 +
(1− |u|2)2

ε2
, (6)

Ω is a two-dimensional smooth bounded domain (simply connected), ε is
a (small) material constant, and u : Ω→ C. Vortices = zeroes of u with
winding number. If Fε(uε) ≤ C | log ε| then configurations have bounded
number of vortices and one may extract limiting vortices ai ∈ Ω with
degrees di ∈ Z.
Γ-convergence result: there exists a limiting energy F = W : if

curl 〈iuε,∇uε〉⇀ 2π
n∑

i=1

diδai in D′(Ω)

then

lim inf
ε→0

Fε(uε)− π
n∑

i=1

|di || log ε| ≥W (a,d).

Bethuel-Brezis-Hélein



∂tu
| log ε|

= ∆u +
u
ε2

(1− |u|2). (7)

is the gradient flow of Fε for the structure ‖ · ‖Xε
= 1√

| log ε|
‖ · ‖L2(Ω).

The limiting space of configurations (a,d) with di fixed to ±1, can be
identified to Ωn, and we equip it with the rescaled Euclidean structure on
(R2)n given by ‖ · ‖2Y = 1

π | · |
2
R2n .

(C1)–(C2) are here:
1. if uε(t)

S
⇀ (a(t),d) with di = ±1,

lim inf
ε→0

1
| log ε|

∫ s

0
‖∂tuε‖2L2(Ω)(t) dt ≥ 1

π

∫ s

0
|∂tai |2 dt

2. if uε
S
⇀ (a,d) with di = ±1,

lim inf
ε→0

1
| log ε|

∫
Ω

| log ε|2
∣∣∣∆u +

u
ε2

(1− |u|2)
∣∣∣2

≥ ‖∇YW (a,d)‖2Y = π|∇W (a,d)|2.

These two conditions were already proved to be true (Lin, Jerrard) along
configurations such that Fε(uε) ≤ πn| log ε|+ C . We obtain a new
variational proof of the known result (Lin, Jerrard-Soner)
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Theorem (Sandier-S)

Let uε be a family of solutions to (7) with either Dirichlet or Neumann
boundary condition, such that curl 〈iuε,∇uε〉(0) ⇀ 2π

∑n
i=1 diδa0

i
as

ε→ 0 where a0
i are distinct points in Ω and di = ±1. Assume also uε(0)

is well-prepared in the sense

Fε(uε(0)) = πn| log ε|+ W (a0,d) + o(1) as ε→ 0.

Then there exists a time T∗ > 0 such that
curl 〈iuε,∇uε〉(t) ⇀ 2π

∑n
i=1 diδai (t) for all t ∈ [0,T∗) and

dai

dt
= − 1

π
∂iW (a(t),d), ai (0) = a0

i

with the di ’s remaining constant. T∗ is the minimum of the collision time
and the exit time (in the Neumann case) under this law.

Application by Kurzke for dynamical law of boundary vortices in thin
micromagnetic films.



Case of the Allen-Cahn equation

∂tu = ∆u +
1
ε2

f (u) (8)

where u is real valued and f (u) = 2u(1− u2). Gradient flow of

Eε(u) =
1
2

∫
Ω

ε|∇u|2 +
W (u)

ε

for the structure ‖ · ‖Xε =
√
ε‖ · ‖L2(Ω), with W (u) = 1

2 (1− u2)2.
Eε Γ-converges to the perimeter functional

F (Γ) = 2σHN−1(Γ)

σ =
∫ 1
−1

√
W (s)/2 ds = 2

3 Solutions to (8) converge to mean curvature
flow

∂tΓ = H

(weak sense given by Brakke - varifold setting) where Γ is the limiting
interface. Gradient flow of F for the (formal) structure ‖ · ‖2YΓ

= 2σ‖ · ‖2L2
Γ
.



(C1)–(C2) are in this setting:
1. if uε(t)

S
⇀ Γ(t),

lim inf
ε→0

∫ s

0
ε‖∂tuε‖2L2(Ω)(t) dt ≥ 2σ

∫ s

0

∫
Γ(t)

|∂tΓ|2 dt. (9)

2. if uε
S
⇀ Γ

lim inf
ε→0

∫
Ω

ε

∣∣∣∣∆uε +
1
ε2

f (uε)
∣∣∣∣2 ≥ 2σ

∫
Γ

|H|2. (10)

I First relation proved by Mugnai-Röger, in an appropriate weak sense
(L2 flows for rectifiable integer measures).

I Second relation proved by Röger-Schätzle in sense of varifolds.
Corresponds to a De Giorgi conjecture (Γ-convergence of∫

Ω
ε
∣∣∆uε + 1

ε2 f (uε)
∣∣2 to the Wilmore energy

∫
|H|2).

I With these two results at hand, another proof of convergence of AC
to MC formally (and probably rigorously) follows.



Application to Cahn-Hilliard (by Nam Le)

Cahn-Hilliard equation

∂tuε = −∆vε in Ω

vε = ε∆uε + 1
ε f (uε) in Ω

∂uε

∂ν = ∂vε

∂ν = 0 on ∂Ω

uε(x , 0) = u0
ε(x)

(11)

Convergence to Mullins-Sekerka motion in the sense that vε converges to
v solving the following free-boundary problem

∆v = 0 in Ω\Γ(t)

v = σH on Γ(t)
∂v
∂ν = 0 on ∂Ω

∂tΓ = 1
2

[
∂v
∂ν

]
Γ(t)

Γ(0) = Γ0.

(12)

[
∂v
∂ν

]
Γ(t)

denotes the jump of the normal derivative of v accross the
hypersurface Γ(t).



Cahn-Hilliard is the H−1 gradient flow of the Modica-Mortola energy Eε
so Xε = H−1(Ω). The limiting energy is F (Γ) = 2σHN−1(Γ).
For every f̃ ∈ H1(Ω) such that

∆f̃ = 0 in Ω\Γ
f̃ = f on Γ
∂ f̃
∂ν = 0 on ∂Ω

we set
‖f ‖H1/2(Γ) = ‖∇f̃ ‖L2(Ω)

By duality we define H−1/2(Γ) (assuming Γ is regular). The structure Y
is then taken to be ‖ · ‖YΓ

= 2‖ · ‖H−1/2(Γ).



(C1)–(C2) are here :
1. if uε(t)

S
⇀ Γ(t) on [0,T ) then for all 0 ≤ s < T∫ s

0
‖∂tuε‖2H−1(Ω)(t) dt ≥ 4

∫ s

0
‖∂tΓ(t)‖2H−1/2 ds (13)

2. if uε
S
⇀ Γ, then

lim inf
ε→0

∫
Ω

∣∣∣∣∇(ε∆u +
1
ε
f (u)

)∣∣∣∣2 ≥ σ2‖H‖2H1/2(Γ). (14)

(13) is easy to prove. Le proved that (14) holds if Γ is regular enough
and N ≤ 3, and that there is Γ-convergence of ‖∇

(
ε∆u + 1

ε f (u)
)
‖2L2(Ω)

to σ2‖κ‖2H1/2(Γ)
. This is a higher derivative analogue to the De Giorgi

conjecture. With this, Le obtains a theorem of convergence of
well-prepared solutions to Cahn-Hilliard to classical solution of
Mullins-Sekerka under regularity assumption on the limiting interface,
until self-collision or exit time.
Other work in the same line by Bellettini-Bertini-Mariani-Novaga



Conclusions and perspectives

I This scheme of Γ-convergence of gradient flows is a simple tool to
understand via a general principle why solutions to gradient flows
converge to their limiting counterpart.

I It works formally or rigorously in some nontrivial examples. It would
be interesting to find more.

I Proving whether the extra two conditions hold potentially leads to
many open questions.

I The framework can be extended to metric spaces. It would be
interesting to find examples where this setting is useful.

I It is also well adapted to study the Γ-convergence of action
functionals

Aε(u) =

∫ T

0
‖∂tu +∇Xε

Eε(u)‖2Xε
dt

with u(0) = u0
ε and u(T ) = uT

ε . Cf. work of
Kohn-Otto-Reznikoff-Vanden-Eijnden, Kohn-Reznikoff-Tonegawa.
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